
2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 1

SOREL: Efficient and Secure ORE-based
Range Query over Outsourced Data

Songnian Zhang, Suprio Ray, Member, IEEE, Rongxing Lu, Fellow, IEEE

Abstract—Outsourcing data to the cloud has become popular due to the big data challenges. However, security concerns compel the
outsourced data to be encrypted before sending them to the cloud, which lowers their utility and efficiency. The range query plays a
significant role in common queries. Consequently, how to efficiently support the range query over encrypted data has become an
important challenge. Previously reported schemes either achieve efficiency only in a specific operation or have severe defects in
scalability. To address these limitations, we propose a framework, called SOREL, which simultaneously considers security, efficiency
and scalability. Specifically, we first propose a new efficient and Secure Order Revealing Encryption (SORE) scheme, which is more
secure than bit-based ORE schemes. Then, by employing the proposed SORE scheme, we design a novel index within our framework
SOREL to support efficient updating and query operations over encrypted data. Detailed security analysis shows that our SOREL
achieves the desirable security requirements. Additionally, results from extensive evaluations indicate that i) SORE outperforms other
alternative schemes by at least 8×; and ii) SOREL is at least 3× faster than the comparative schemes with range query operation in
the best case while ensuring the competitiveness with insertion operation.

Index Terms—Secure ORE, Efficient Range Query, Outsourced Data, Index Structure.

F

1 INTRODUCTION

W ITH the rapidly growing data volume, outsourcing
data to the cloud has become a popular option that

many individuals and companies are tending to consider
today. In such a scenario, it is crucial to ensure the security of
outsourced data since they could be either stolen by external
attackers or snooped by semi-trusted cloud providers. To
address these security issues, an intuitive approach is to
encrypt all data before outsourcing them to the cloud. How-
ever, traditional encryption schemes prevent the cloud from
directly processing queries over the encrypted data, which
obviously lowers the data utility. Therefore, ensuring the
utility of encrypted outsourced data is of great importance
to the success of outsourcing data to the cloud.

Although the point query can be easily dealt with using
deterministic encryption schemes, it is still challenging to
deal with the range query using mainstream symmetric or
asymmetric encryption schemes. The main reason is that
it is quite difficult to determine the order relation only by
comparing ciphertexts. However, the support of ciphertext-
based range query is indispensable, because if the range
query over encrypted data (henceforth range query will refer
to range query over encrypted data) can be properly resolved,
then other complex comparison-based operations, such as
sort and clustering, can also be resolved. A plausible ap-
proach is to adopt Homomorphic Encryption (HE) [1] to
deal with the challenge. However, the HE-based solutions
are impractical due to the prohibitive computational over-
head. Similarly, Garbled Circuit (GC) based range query
approaches [2] suffer from performance issues and are ineffi-
cient in insertions. However, it is challenging to adopt these
solutions in real-world databases, because efficient search

• S. Zhang, S. Ray, and R. Lu are with the Faculty of Computer Science,
University of New Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail:
szhang17@unb.ca, sray@unb.ca, rlu1@unb.ca).

and insertion operations are critical to populating databases.
Considering practicability, it is becoming urgent to ensure
efficiency for the encrypted databases, since they inevitably
incur more computation compared with original databases.

Searchable Symmetric Encryption (SSE) [3], [4] has been
utilized to support efficient range query and insertion,
which can take full advantage of hash tables by scanning
all values in the query range. However, these schemes are
quite limited due to the fact that they can only support
enumerable fields.

Property preserving encryption (PPE) [5] is another ap-
proach proposed to enhance the efficiency of searching over
encrypted data. It can enable the ciphertexts to maintain
a particular property on their underlying plaintexts. For
instance, order preserving encryption (OPE) [6] is a typical
cryptographic primitive for PPE and preserves the order
relations of plaintexts. Although such encryption schemes
reveal some properties of plaintexts, they are still attractive
due to the high efficiency and practicability. Recently, the
Microsoft researchers released a secure cloud database so-
lution [7], in which the order relations are revealed for effi-
ciency considerations. Since the OPE ciphertexts can directly
reveal the order relations of plaintexts, several range query
schemes were proposed [8], [9] based on OPE. Even some
secure databases, e.g., CryptDB [10], also integrated OPE as
the cryptographic primitive into their systems to support
the range query. However, Boldyreva et al. [11] proved that
there does not exist an efficient OPE scheme that satisfies
the security notion of IND-OCPA (indistinguishability under
ordered chosen-plaintext attack). Additionally, only supporting
the numeric type range queries is another weakness of OPE.
To address these limitations, order revealing encryption
(ORE) was presented in [12]. As the name suggests, this
encryption primitive reveals order relations in a similar way
as OPE. The key difference is that, for ORE, the order prop-

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 2

erty is exposed by a public comparison function, while the
ciphertext of OPE can reveal the plaintext order directly. The
existing ORE schemes can support any data type (since it is
designed for the bit sequence) and are more efficient than
OPE. However, when it comes to security, to the best of our
knowledge, none of the ORE schemes satisfies IND-OCPA,
because they leak additional information in the plaintext.
The schemes proposed in [13], [14] will disclose the most
significant differing bit or block, and the schemes presented
in [15], [16] will leak “equality pattern” of the most sig-
nificant differing bit. Since the most significant differing
bit reveals the difference among plaintexts, it will facilitate
the adversary to infer the underlying plaintexts from ORE-
based ciphertexts. Thus, although the ORE schemes are
efficient enough, they leak too much information.

In this paper, we first propose a novel ORE-based en-
cryption scheme, called Secure Order Revealing Encryption
(SORE), to address the security deficiencies of the existing
ORE schemes. In this way, we can inherit the high effi-
ciency of ORE schemes while enhancing their security. With
SORE, the adversaries are unable to determine the real first
differing bit through comparing ciphertexts. Our scheme
first encodes and expands the plaintext bit sequence into
a new sequence, which is called order-preserving bit sequence.
Afterward, the new sequence is encrypted bit by bit and
form the final ciphertext. The details of SORE are presented
in Section 3. For most security enhancement schemes, the
challenging part is improving security while still ensuring
efficiency. Note that our proposed SORE scheme can deal
with the challenge, i.e., experimental evaluation results in-
dicate SORE can hide the most significant differing bit only
at the cost of an extra 10% overhead when the plaintext is
greater than 24 bits.

Then, we propose a SORE-enabled framework, called
SOREL, to support the efficient point and range query over
encrypted data (details are in Section 4). For the point
query, the hash table based index (SORELeq in Fig. 4)
can be employed to achieve O(1) efficiency. To support
range query efficiently, a number of ordered indices were
proposed, such as B+tree [17], Masstree [18] and Adaptive
Radix Tree [19]. However, the time complexity of these
schemes is O(logN), where N is the number of elements
in the dataset. In this paper, we introduce a novel index
structure to efficiently support the range query over SORE
based ciphertexts. At first, the idea of locality preserving
hashing [20] is combined with the hash table to form a two-
level range index component (SORELrq in Fig. 4), where the
first level is a hash table, and the second level consists of
several blocks generated by aggregating the dataset. Then,
to further improve the performance, we adopt some tech-
niques to optimize the prototype index, which enables the
worst-case time for looking up a predecessor or successor
to take only O(1) + O(logB), where B is the block size in
the two-level range index component. Additionally, to tackle
security and efficiency issues incurred by non-uniform data
distribution, we propose a step function based distribution
suppression scheme to hide the data distribution. Note that
some existing indexing approaches for encrypted data are
only efficient in either insertion [9] or query [21], whereas
our SOREL framework achieves high efficiency in both
query and insertion. In summary, the main contributions

of this paper are as follows.

• First, we propose a secure ORE scheme, called SORE,
to enhance the security of original ORE by address-
ing the first differing bit leakage. This encryption
scheme is employed as the cryptographic primitive
in our SOREL to encrypt the outsourced data.

• Second, we design an efficient two-level index struc-
ture to support the range query within our SOREL
framework. In particular, we introduce the concept
of order aggregating hash function to bridge the gap
between the range query and hash tables. With this
function, a dataset can be divided into multiple
blocks, and then the order aggregating hash is used
to quickly locate one block for further searching.

• Third, we propose a distribution suppression scheme to
hide the data distribution of a dataset, which can
further improve the security and efficiency of our
SOREL framework.

• Finally, we implement our SOREL framework and
experimentally evaluate it with different datasets.
The results show that i) the proposed SORE scheme
outperforms alternative schemes by at least 8× in
terms of the average execution time, and ii) our index
structure over encrypted data is faster than B+tree-
based ORE protocol [22] and Logarithmic-BRC [3] by
up to 7× and 3×, in terms of range query execution
time, respectively.

The remainder of this paper is organized as follows. We
start with an overview of threat model and SOREL architec-
ture in Section 2. Section 3 introduces our proposed SORE
scheme. In Section 4, we describe our novel index structure
together with the details of our SOREL framework. Then,
we analyze SOREL in terms of security and performance in
Section 5. Experimental evaluation is presented in Section 6.
Finally, we discuss some related works in Section 7 and
draw our conclusion in Section 8.

2 OVERVIEW

In this paper, we consider a typical cloud-based 3-role
model, including a data provider, a cloud server and data
users, in which the data provider is responsible for up-
loading his/her data to the cloud, while the utilization is
initiated by the data users (authorized with secret keys
by the data provider). A typical application scenario for
this model is that some enterprises release their datasets
to the cloud for their users to query. In such a scenario, the
queries are high frequent and happen in real-time, while the
insertions are infrequent after the first data release. In this
work, we target this type of scenario. Based on the above
model and scenario, we will formalize the threat model and
the overview of SOREL in this section.

2.1 Threat model
In our threat model, the cloud server is assumed semi-
honest, which means it will faithfully follow the protocols
but may be curious about the outsourced data and query
values. On the other hand, the data provider and the data
users are assumed to be trusted. There are two adversaries
considered: i) external attackers; ii) the semi-honest cloud

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 3

Data Provider

Data User

SORE.Enc(plaintexts)

Index

●

●

●

Insert

Query

Return

Cloud
Server

SORE.Enc(plaintexts)

SORE.Dec(ciphertexts)

Fig. 1: Overview of SOREL
server. External attackers may break the defense system
and pry into sensitive data on the transmission or storage
stage, while the cloud server attempts to obtain and infer
the value of data items. To defend against these adver-
saries, a straightforward solution is to apply cryptographic
primitives to the outsourced data, so that only the data
provider and the authorized users can decrypt it. However,
it can entail two issues. First, the cloud server needs to
support basic operations over encrypted data. Second, the
employed cryptographic primitive may lead to performance
overhead. Besides, the generated ciphertexts may not work
with the existing index schemes, ensuing lower efficiency
when using data.

2.2 Overview of SOREL
In our SOREL framework, we adopt cryptographic tech-
niques to deal with the security issues for outsourced data
and take into account high efficiency. In particular, we in-
troduce our secure order revealing encryption, called SORE,
which is employed as the cryptographic primitive to encrypt
the outsourced data. To improve efficiency, we design a
novel index structure to support insertion, query, and dele-
tion operations over these encrypted data. Hence, there are
two core components in SOREL: namely (i) SORE encryp-
tion scheme (Section 3) and (ii) Index structure (Section 4).
As shown in Fig. 1, the data provider employs the SORE
encryption module for encrypting the outsourcing data,
while the data user holds SORE encryption and decryption
modules for encrypting query values and recovering plain-
texts, respectively. In SOREL, the index structure can be built
and updated by the cloud server over the encrypted data,
which can avoid extra communication. Furthermore, our
devised index structure considers the non-uniform data dis-
tribution. By integrating a distribution suppression scheme,
our SOREL framework can securely and efficiently deal with
skewed data. It is worth noting that all data transferred
to the cloud server and responded to the data user are in
ciphertexts.

3 SORE: SECURE ORE-BASED ENCRYPTION

In this section, we review the essential concepts of ORE and
then introduce our security enhanced ORE scheme, SORE.

Preliminaries. For n ∈ N+, we denote M={mi}ni=0 as
a set of plaintexts, and C={ci}ni=0 as the corresponding
ciphertexts, where each ci=Enc(mi). We say Compare(·) is
a common comparison function that can reveal the order
relation of two input parameters, and len() is a function
to return the length of a bit sequence. We also define that
prefix and suffix represent two fixed bit sequences, and
len(prefix) = len(suffix) = `.

3.1 ORE
The motivation behind ORE is to remedy the inherent
defects of OPE in terms of performance and scalability.
Unlike OPE, the ORE ciphertext does not reveal the or-
der of underlying plaintext directly. Only by comparing
two ciphertexts with a publicly computable comparison
function can we reveal the order of their corresponding
plaintexts. Typically, an order revealing encryption is a tuple∏

ORE = {ORE.Setup,ORE.Encrypt,ORE.Compare} [13].
• ORE.Setup(1λ). The algorithm is responsible for gener-

ating the secret key sk for the encryption algorithm.
• ORE.Encrypt(sk, m). Using the secret key sk, this

algorithm encrypts a message mi into a ciphertext,
ci=ORE.Encrypt(sk,mi) (i=0, 1, 2. . . .n).

• ORE.Compare(ci, cj). Generally, the algorithm takes
two ciphertexts, e.g., (ci, cj) ∈ C, as input, and outputs the
order relation of (mi,mj) ∈M .

Here we do not describe the ORE.Decrypt(sk, c) algo-
rithm, as it is relatively simple to deduce ORE.Decrypt(sk,
c) from ORE.Encrypt(sk, m). For simplicity, henceforth, we
ignore the secret key in ORE.Encrypt(sk, m).

Note that, for any ORE scheme, the following correctness
equation must be satisfied:

ORE.Compare(ci, cj) = Compare(mi,mj) (1)

where ci = ORE.Encrypt(mi) and cj = ORE.Encrypt(mj).
Currently, there are several approaches to design ORE
schemes. The most practical one, called bit-based ORE, is
to convert a message into a bit sequence, and encrypt these
bits one by one. Specifically, give a message m, the ORE
scheme first converts it into a bit sequence (b1, b2, · · · , bω).
Then, the bit sequence is encoded into the ORE ciphertext
(u1, u2, · · · , uω), where ui, i ∈ [1, ω] is related to bi. Gen-
erally, the bit length of ui is no less than 2. However, this
approach has a severe security issue, i.e., it will leak the
most significant differing bit or block [13], [14].

3.2 Description of SORE
Our proposed SORE scheme can enhance the security of
bit-based ORE. Specifically, before encrypting a message
m with the bit-based ORE, we expand m into an order
preserving bit sequence by substituting the selected bits
with random bit sequences. With the help of this idea, SORE
can counteract against the leakage of bit-based ORE, i.e.,
the most significant differing bit or blocks, while inheriting
the features of ORE. There are five algorithms involving
SORE, and they can be described as:

∏
SORE={SORE.Setup,

SORE.REE, SORE.Encrypt, SORE.Compare, SORE.Decrypt}.
• SORE.Setup(1λ, k). The setup algorithm takes a se-

curity parameter λ and an expansion coefficient k as in-
puts and generates seven parameters used in SORE.REE(),
SORE.Encrypt(), and SORE.Decrypt(). We list all parameters
in Table 1 and will elaborate them later in this section.

• SORE.REE(Nb, loc[Nb], rs[Nb],m). Using the first
three inputs, this algorithm expands and encodes a mes-
sage m into an order-preserving bit sequence, namely
mopbs=SORE.REE(m). See details in Algorithm 1. An impor-
tant property of the algorithm is that: given two messages
(mi,mj), we have:

Compare(miopbs,mjopbs) = Compare(mi,mj) (2)

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 4

TABLE 1: SORE.Setup Parameters

Notation Description Where to use

sk Secret key SORE.Encrypt(),
SORE.Decrypt()

Nb Number of selected bits SORE.REE()

loc[Nb] A set to indicate the location
of selected bits

SORE.REE(),
SORE.Decrypt()

allo[Nb] A set to indicate the sub-bit
sequence length

SORE.Setup()

rs[Nb] A set to indicate the random
sub-bit sequence

SORE.REE(),
SORE.Decrypt()

rbs A random bit sequence used
as prefix and suffix

SORE.Setup()

N Target length of the order-
preserving bit sequence

SORE.Setup()

where miopbs=SORE.REE(mi), mjopbs = SORE.REE(mj).
• SORE.Encrypt(sk,mopbs). The algorithm encrypts

mopbs using sk and outputs a ciphertext c. In SORE, we
employ ORE.Encrypt() in bit-based ORE as SORE.Encrypt().

• SORE.Compare(ci, cj). The algorithm should be con-
sistent with SORE.Encrypt(). If we adopt a bit-based
ORE.Encrypt() in SORE, we should also adopt the corre-
sponding bit-based comparison function ORE.Compare() as
SORE.Compare().

• SORE.Decrypt(sk, loc[Nb], rs[Nb], c). The decryption
algorithm consists of two sub algorithms. One is
ORE.Decrypt(), and the other is SORE.DeREE() (it is for-
mally depicted in Algorithm 2). To decrypt the ciphertext
c, first, ORE.Decrypt() is applied to recover mopbs using sk.
Then, SORE.DeREE() is used to recover m from mopbs.

Obviously, SORE.Setup() and SORE.REE() are two core
algorithms in SORE. To better understand why we need to
initialize those parameters listed in Table 1, we first discuss
SORE.REE() then describe SORE.Setup().

SORE.REE(). We divide this algorithm into three steps:
Step-1. Add fixed prefix and suffix. The last argument in

SORE.REE() is the message m to be expanded and encoded.
To support multiple types of messages, SORE uniformly
converts a message m into a bit sequence {0, 1}n before
processing it, where n = len(m). Afterward, prefix:{0, 1}`
and suffix:{0, 1}` are added to the original bit sequence, and
we denote the new bit sequence as mps:{0, 1}`+n+`.

Step-2. Expand. The expansion step refers to the selected
bits in mps being replaced with random sub-bit sequences
rs[Nb] generated in SORE.Setup(). The i-th selected bit is
expanded to rs[i] (i = 0, 1. . . Nb − 1) random bit sequence.

Step-3. Encode. This step forms the order-preserving bit
sequence mopbs:{0, 1}N , which keeps the order of original
messages. We propose a simple but effective strategy to
maintain the order of original messages. For unselected bits,
they remain unchanged. For the i-th selected bit, if it is 0, we
replace it with the corresponding random sub-bit sequence
rs[i]. Otherwise, we replace it with rs[i]+1. See line 9-13 in
Algorithm 1 for details.

Now, we prove that the order-preserving bit sequences
preserve the order of original messages, i.e., Eq. (2) holds.

Proof. Given two plaintexts mi and mj , suppose mi <
mj . After adding prefix and suffix to each plaintext, we have
mips < mjps. In Step-2, the same bit positions in mips and
mjps are selected to expand. If the first differing bit between
mips and mjps is not selected, the bit can guarantee that the

expanded sequences have miopbs < mjopbs. Otherwise, we
suppose the first differing bit is the i-th selected, and the bit
in mips will be replaced with rs[i], while it is rs[i] + 1 for
mjps. Therefore, miopbs < mjopbs holds in this case. Hence,
we have Compare(mi,mj)=Compare(miopbs,mjopbs).

SORE.Setup(). In Table 1, the bit length of the secret
key sk is determined by the security parameter λ, namely,
len(sk) = λ. Besides sk, there are six parameters, and we
explain them as follows.

(1) Nb is a random number. We limit it to be greater than
n/2 where n=len(m), and generally n ≥ 8. This is because, if
Nb is small, it means that few bits are selected, which lowers
the security of SORE and deviates from our security goal.

(2) loc[Nb] is a set with sizeNb. It is generated by a piece-
wise sampling algorithm and imposed on prefix position set
{0, 1,`− 1}, message position set {`, `+1, . . . `+n− 1}
and suffix position set {` + n, ` + n + 1, ` + n + ` − 1},
respectively. Accordingly, 0 ≤ loc[i] < ` + n + ` where
i = {0, 1. . . .Nb−1}. In the worst case, we hope to guarantee
that at least one bit is selected in prefix and suffix.

(3) allo[Nb] can be regarded as a set from an allocation
algorithm that randomly assigns the total extension length
(TEL) to each selected bit. Regarding TEL, we have the
following equation:

TEL = N–(`+ n+ `−Nb) =
Nb−1∑
i=0

allo[i] (3)

The assigned value allo[i] represents the length of the ran-
dom sub-bit sequence, which replaces the selected bit in the
expand step of SORE.REE(). Note that, it is required that
each item in allo[Nb] must be no less than 2. That is because
SORE protects the index of the most significant differing bit
by randomly adding the sub-bit sequences to the original
message. If the length of the sub-bit sequence is 1, the
security improvement of our scheme may be weakened,
especially in some extreme cases, e.g., the length of all sub-
bit sequences is 1.

(4) rs[Nb] is a random sub-bit sequence set. First, we
generate Nb random strings, and then these strings are trun-
cated by specified length, such that, rs[i] = {0, 1}allo[i](i =
0, 1, 2. . . Nb−1). Before finalizing rs[Nb], we design a verifi-
cation algorithm to check whether rs[i] is all 1-bit sequence,
e.g., ‘111’, ‘11111’. From the encode step of SORE.REE(), we
know that if the selected bit is 1, the substitution sequence
would be rs[i]+1. Hence, to avoid the overflow, rs[Nb] needs
to exclude all 1-bit sequence.

(5) rbs is a random bit sequence with N bits: rbs =
{0, 1}N , where N will be introduced in the next part. Since
` is public and ` < N , we can obtain prefix and suffix by
truncating rbs, i.e., prefix=suffix={0, 1}`.

(6) N is the target length of the order-preserving bit se-
quence mopbs : {0, 1}N , which is produced by SORE.REE().
It can be calculated by the following equation:

N = k × len(prefix || m || suffix) = k × (`+ n+ `) (4)

where `=len(prefix)=len(suffix), n=len(m) and k is an expan-
sion coefficient, and k > 1.

The proof of SORE correctness. As a secure ORE
scheme, SORE must satisfy the ORE correctness definition,

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 5

Algorithm 1 SORE.REE()
Input: Number of selected bit, Nb; The set of location for selected bit,

loc[Nb]; The set of sub-bit sequence, rs[Nb]; Message m; Note that
prefix and suffix are fixed, len(prefix)=len(suffix)=`.

Output: Order-preserving bit sequence, mopbs : {0, 1}N ;
1: i, index← 0
2: m : {0, 1}n ← ConvertToBits(m)
3: mps : {0, 1}`+n+` ← Add(prefix, suffix,m)
4: Sort(loc[Nb])
5: while i < (` + n + `) do
6: currentBit← getBit(mps)
7: if i = loc[index] then
8: subBitSeq← rs[index]
9: if currentBit = 0 then

10: mopbs ← mopbs || subBitSeq
11: else
12: mopbs ← mopbs || (subBitSeq + 1)
13: end if
14: index← index + 1
15: else
16: mopbs ← mopbs || currentBit
17: end if
18: i← i + 1
19: end while
20: return mopbs

i.e., SORE.Compare(ci, cj)=Compare(mi,mj). The proof:

SORE.Compare(ci, cj) = ORE.Compare(ci, cj)
= ORE.Compare(SORE.Encrypt(miopbs),

SORE.Encrypt(mjopbs))

= ORE.Compare(ORE.Encrypt(miopbs),

ORE.Encrypt(mjopbs))
from Eq. (1)−−−−−−→

= Compare(miopbs,mjopbs)
from Eq. (2)−−−−−−→= Compare(mi,mj).

Example of SORE. As shown in Fig. 2, we give an
example to illustrate SORE. In the example, the message
is an integer 89, and prefix=suffix=‘0101’. Additionally, we
set n=len(89)=8 and k=2. In SORE.Setup(), we obtain the
following parameters:

Nb = 6, ` = len(prefix) = len(suffix) = 4

N = k × (`+ n+ `) = 32

Nb is randomly generated and greater than n/2=4. Using
the piecewise sampling algorithm, we get the selected bit
set loc[6]={0, 3, 5, 9, 11, 14}, which indicates the position of
mps:{0, 1}16. Simultaneously, we have the allocation set
allo[6]={4, 2, 5, 3, 3, 5}, and we can check the correctness
of this set using Eq. (3). In Fig. 2, there are six sub-bit se-
quences rs[6] = {‘1000’, ‘01’, ‘11110’, ‘101’, ‘011’, ‘00111’}.
The length of each item is {4, 2, 5, 3, 3, 5}.

0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1

0 1 0 1 1 0 0 1

1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1

Add Prefix&Suffix:
𝒎𝒑𝒔 bit sequence

Message bit sequence

𝒎𝒐𝒑𝒃𝒔

1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1

+1

Sub-bit sequences
+1 +1

Fig. 2: A Simple SORE Example

In SORE.REE(), first, we add prefix and suffix (‘0101’)
to bit sequence m, then we expand selected bits with corre-
sponding sub-bit sequences. Finally, we encodemps:{0, 1}16

Algorithm 2 SORE.DeREE()
Input: An order-preserving bit sequence, mopbs; The set of location for

selected bit, loc[Nb]; The set of sub-bit sequence, rs[Nb].
Output: A plaintext, m;
1: N ← len(mopbs)
2: i, anchor, index← 0
3: while anchor < N do
4: if i = loc[index] then
5: n← len(rs[index])
6: bitSeq← getBits(mopbs, anchor, anchor + n)
7: if bitSeq = rs[index] then
8: m← m || ‘0′
9: else

10: m← m || ‘1′
11: end if
12: index← index + 1
13: anchor← anchor + n
14: else
15: m← m ||mopbs[anchor]
16: anchor← anchor + 1
17: end if
18: i← i + 1
19: end while
20: m← prunePreSuffix(m, `)
21: return m

and form output mopbs:{0, 1}32. In Fig. 2, grey, green and
white boxes represent sub-bit sequences, prefix/suffix and
the original message, respectively.

4 SOREL: INDEX STRUCTURE AND BASIC OPER-
ATIONS PROCESSING

To guarantee the security of outsourced data, we employ
SORE as a cryptographic primitive in SOREL, which how-
ever incurs a formidable challenge in usability and effi-
ciency. Hence, an efficient index is required to support
basic operations (query, insert and delete) over SORE pro-
duced ciphertexts. Unfortunately, most of the existing index
schemes cannot satisfy the requirements. For instance, hash
tables can perform the point query with O(1) time, but they
cannot directly support the range query. Ordered indices,
such as B+tree, can perform range query well, but many
of them have time complexity with O(logN), where N is
the number of records or size of the dataset, which are
not sufficiently efficient. In view of the reality, we propose
a novel index structure, which can perform query and
insert operations over SORE ciphertexts and attain better
efficiency. With our index, the worst-case time complexity
of range query is O(1)+O(logB), where B is the size of the
block in our index, and the time complexity of insertion is
similar to that in the range query. Besides, we apply several
optimization techniques to further improve the efficiency of
our index. Next, we describe (i) our index structure and (ii)
processing basic operations in detail.

4.1 Our index structure

In this section, we first introduce the key ideas of our
index structure. Then, we present a distribution suppression
scheme that can address the security and efficiency issues
when using the index structure for non-uniform datasets.
Finally, we describe how to build our index structure.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Dataset Domain

(a) 𝒇𝒄𝒅(𝒙) (b) LH(x)

0

1

2

3

0 5 10 15 20

Dataset Domain

Fig. 3: Distribution suppression scheme

4.1.1 Key ideas
The motivation behind the design of our index structure
is to support fast query (including point and range query)
operations in a secure manner. Our performance aim is to
drive the cost of query processing close toO(1). Since a hash
table can perform the point query fast, we first utilize the
hash table based data structure to deal with the point query.
The remaining and challenging issue is how to make hash
tables support the range query. To tackle it, we introduce the
idea of locality preserving hashing [20] and propose a notion
of order aggregating hash function to make it possible to
use hash tables for the range query.

Order aggregating hash function. The definition of
order aggregating hash function Hoa(x) is as follows:
Definition 1. An order aggregating hash function is defined

as Hoa(x) = Hash(LH(x), sk), where LH(x) is a many-
to-one function that can map a set into one point while
preserving the order relation of sets, Hash(·) is a regular
hash function with the secret key sk.

Take a sorted dataset: D={1, 2, 5, 15, 16, 17, 18, 19} as an
example. First, with the help of LH(x), we can divide the
dataset into several sets and map them into points. Also,
LH(x) should keep the order relation of these sets. A simple
example is LH(x)= bxac, where x is an element of the
dataset, and a is a constant, e.g., a=5. In this case, D can be
divided into three sets: {1, 2}, {5} and {15, 16, 17, 18, 19}.
Then, we link these sets to a hash table using Hash(·), which
means the key isHoa(di), where di ∈ D, and the value is the
pointer to a set. When launching a range query, we can first
calculate hash values for the query’s boundary by Hoa(x),
and then identify in which set the boundary value should be
located. Afterward, a special algorithm, e.g., binary search,
is applied on the set to lookup the boundary value. To
ensure efficiency in both insertions and range queries, we
design a search algorithm based on skiplist. Since locating
the range query’s boundary values on a set only involves
the comparison operation, and SORE ciphertexts can reveal
the order relation of underlying plaintexts by a public
comparison algorithm, searching on a set can be performed
over a SORE encrypted dataset. Therefore, for a range query,
given boundary values’ hash values and SORE ciphertexts,
we can answer the query using the index structure built by
such an idea.

4.1.2 Distribution suppression scheme
Although the proposed Hoa(x) can bridge the gap between
the range query and hash tables, there is still a critical
issue, i.e., the sets pointed by the hash table will reveal the
distribution of the underlying dataset (notably, in our index

Level1: Hash Table

Level2: Skiplists ·
NIL

NIL

NIL·
·
·

· ·
·

·
·

NIL

NIL

· ·
Head Head

𝐒𝐎𝐑𝐄𝐋𝒓𝒒

(max, min) (max, min)

𝐒𝐎𝐑𝐄𝐋𝒆𝒒

Fig. 4: Our Index Structure

structure, all items in a dataset are encrypted by SORE). Ac-
cordingly, an attacker can easily analyze the size of each set
and infer the distribution of the original dataset. In addition
to the security issue, there is also an efficiency issue, i.e., a
non-uniformly distributed dataset tends to result in a mass
of elements concentrating in one set, which may skew and
slow down the execution of the range query and insertion.
In such a case, the benefits of hash tables will vanish, and
the efficiency will degenerate to a binary search. To alleviate
these issues, we put forth a distribution suppression scheme
to hide data distribution. First of all, we summarize the
design goals for the scheme as follows.

• Design goals: Given a sorted dataset, (1) hide the data
distribution; (2) limit the size of each subset to no
more than a threshold; (3) locate a value falling in
which set quickly.

A potential approach is to combine the cumulative distri-
bution function fcd(x) and LH(x) function in Definition 1.
We observe that equalizing fcd(x) over the y-range can
ensure the sets have the same approximate size. Therefore,
integrating fcd(x) into LH(x) can form a step function and
can be formally expressed as LH(x) = bfcd(x) · Count(D)

Bn
c,

where Count(D) is the number of the distinct value in the
given dataset, and Bn is the expected size of a set. Taking
the aforementioned dataset D as an example, the function
fcd(x) and refined LH(x) are shown in Fig. 3a and Fig. 3b,
respectively. In this example, if we suppose Bn = 3, there
will be three sets, i.e., {1, 2, },{5, 15, 16} and {17, 18, 19}.
However, it is hard and inefficient to fit the function fcd(x)
if the data volume is large. Our distribution suppression
scheme still uses the idea that LH(x) is a step function,
which has a mapping relation in Fig. 3b. But, in a practical
way, the following expression will be adopted to calculate
the value of LH(x):

LH(x) =
Bc−1∑
i=1

{
1 x− xi ≥ 0
0 else

(5)

where Bc= dCount(D)
Bn

e is the number of sets, and xi is
the value of split point of the step function. In the above
example, we can treat 5 and 17 as the split points in
dataset D. When performing a range query, the data user
can compute LH(x) in parallel using Eq. (5). Therefore,
he/she can quickly determine which set the query value
falls in. Additionally, reducing the number of split points
can further improve the efficiency of computing LH(x), for
example, using the idea of the learned index introduced
in [23]. However, since we focus on the response time of the
range query taking on the cloud server, these optimization

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 7

Data User
Cloud Server

3<x<18

𝑯𝒑𝟏𝟗𝑯𝒑𝟓 𝑯𝒑𝟏𝑯𝒑𝟏𝟓𝑯𝒑𝟏𝟖𝑯𝒑𝟐 𝑯𝒑𝟏𝟕 𝑯𝒑𝟏𝟔

𝑯𝒑 𝟑 ,𝑯𝒓 𝟎 ,
𝑪𝑺𝑶𝑹𝑬 𝟑 ,‘>’

𝑯𝒑 𝟏𝟖 ,𝑯𝒓 𝟐 ,
𝑪𝑺𝑶𝑹𝑬 𝟏𝟖 ,’<’

𝑪𝑺𝑶𝑹𝑬 𝟓 , 𝑪𝑺𝑶𝑹𝑬(𝟏𝟓)

Calculation
Comp.

Decryption
Comp. 𝑪𝑺𝑶𝑹𝑬 𝟏𝟔 , 𝑪𝑺𝑶𝑹𝑬 𝟏𝟕

𝑯𝒓(1)

𝑺𝑶𝑹𝑬𝑳𝒓𝒒

𝑺𝑶𝑹𝑬𝑳𝒆𝒒

𝑯𝒓(2) 𝑯𝒓(0)

𝑪𝟐𝑪𝟏 𝑪𝟏𝟔𝑪𝟓 𝑪𝟏𝟗𝑪𝟏𝟕

𝑪𝟏 𝑪𝟐 𝑪𝟓 𝑪𝟏𝟓 𝑪𝟏𝟔 𝑪𝟏𝟕 𝑪𝟏𝟖 𝑪𝟏𝟗

Fig. 5: Range query example

techniques are beyond the scope of this paper and will be
discussed in our future work.

4.1.3 Index structure building
Based on the discussion in Section 4.1.1, one could employ
two relatively independent components for the proposed
index structure: one is for point query, denoted as SORELeq ,
and the other is a two-level data structure for range query,
called SORELrq , as shown in Fig. 4. For ease of description,
we first introduce SORELrq and then discuss SORELeq .

SORELrq . It is a two-level data structure. The first level
is a hash table linked to distinct skiplists that comprise
the second level. Prior to constructing SORELrq , the data
provider needs to find the split points for the given dataset
D and uses them to form LH(x) shown in Eq. (5). After-
ward, there are three steps for building SORELrq as follows.

Step-1. Preparation. Sort the dataset D, and then cal-
culate the tuple 〈Hoa(di), Csore(di)〉 for each item di ∈
D, where Hoa(di) = Hash(LH(di), sk) and Csore(di) =
SORE.Encrypt(SORE.REE(di)).

Step-2. Build the first level. Initialize a hash table, and limit
the size of each bucket to 1. Let the hash key be Hoa(di),
and the value be a pointer to the block that contains the
corresponding ciphertext Csore(di).

Step-3. Build the second level. After all items in D are
assigned to blocks, we can build skiplists for each block over
the included Csore(di). It is noteworthy that we utilize a
few optimization techniques for this level. First, maximum
and minimum values are stored in each block to enhance
efficiency. Then, a doubly linked list is built for these blocks.

SORELeq . A hash table can be directly employed here
for the point query. We define Hp(x)=Hash(x, skp) as the
hash function for the hash table, where skp is the other
secret key. To maximize the benefits of the hash table, we
modify it and link each record in SORELeq to SORELrq , as
shown in Fig. 4. Accordingly, the cost of range query can be
further reduced by searching in SORELeq first (see details in
Section 4.2.1).

Algorithm 3 formally outlines the entire index structure
building process. Notably, in reality, since the index building
is based on the encrypted data, the process can be out-
sourced to the cloud, and the data provider only needs to
transfer the hash values and encrypted data of each item to
the cloud server.

4.2 Processing basic operations
In this section, we will present the detail of how our SOREL
framework deals with the basic operations, i.e., query, insert,
and delete, over encrypted data. All of these operations

Algorithm 3 Building Index Structure

Input: A dataset,D=[d1, d2...dn]; Two secret keys, sk and skp; Size of
block, Bn.

Output: The proposed index structure, Γ;
1: Sort(D)
2: hashTableRQ← initRQHashTable()
3: hashTableEQ← initEQHashTable()
4: LH(x), Bc ← generateLH(D,Bn)
5: for i = 0→ n− 1 do
6: hp ← Hash(di, skp)
7: hoa ← Hash(LH(di), sk)
8: csore ← SORE.Encrypt(SORE.REE(di))
9: if isExistBlock(hoa, hashTableRQ) = True then

10: block← HashTableSearch(hoa, hashTableRQ)
11: else
12: block← InitSkiplist()
13: HashTableWrite(Γ, hoa, block, hashTableRQ)
14: end if
15: address← blockAddNode(Γ, block, csore)
16: setMinMax(Γ, block, csore)
17: HashTableWrite(Γ, hp, address, hashTableEQ)
18: end for
19: buildDoublyLinkedList(Γ, Bc, sk, hashTableRQ)
20: return Γ

are executed on the proposed index structure for efficiency
consideration.

4.2.1 Query

Although our index structure can support the point and
range query simultaneously, for simplicity, we describe
these two queries separately.

Point query. This operation is straightforward. The data
user calculates the hash value Hp(dp) for a query value
dp, i.e., Hp(dp)=Hash(dp, skp), where the secret key skp is
authorized by the data provider. Then, Hp(dp) is sent to the
cloud server. Upon receiving it, the cloud can lookup the
search key in SORELeq with O(1).

Range query. In our scheme, as the dataset is sorted,
and items are bidirectionally connected, the range query
can be decomposed as locating upper bound and lower
bound values and collecting all items between them. When
performing a range query, the cloud server can first use
SORELeq to locate the boundary values. If the value exists in
the hash table, it is quite easy for our index structure to lo-
cate the corresponding ciphertext. Otherwise, SORELrq will
be used to find the predecessor (<) or successor (>) for the
boundary value. In SORELrq , the first level (a hash table) can
be used to quickly locate the skiplist block that the boundary
value should fall in, and then searching is conducted on the
corresponding skiplist to find the predecessor or successor.

To illustrate range query processing, let us suppose that
the data user launches a query 3 < x < 18 over the
encrypted dataset D, as shown in Fig. 5 (to save space, the
skiplists in level 2 are not shown in the figure). First, the
data user needs to calculate two hash values, Hp(x) and
Hoa(x), and a ciphertext Csore(x) for each boundary value,
where Hp(x) = Hash(x, skp), Hoa(x) = Hash(LH(x), sk),
and Csore(x) = SORE.Encrypt(SORE.REE(x)). In this case,
x=3 or 18. Since LH(3) = 0 and LH(18) = 2 (see details
in Section 4.1.2), we denote Hoa(3) = Hash(0, sk) and
Hoa(18) = Hash(2, sk) as Hr(0) and Hr(2), respectively.
Upon receiving these values, the cloud first checks whether
Hp(x) is in SORELeq or not. For Hp(18), it is easy to
locate the position of Csore(18) by SORELeq and find that

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 8

Csore(17) is predecessor. For Hp(3), since there does not
exist the corresponding hash value in SORELeq , the cloud
server needs to perform a search on SORELrq . By using
Hr(0), the cloud can quickly locate in which block Csore(3)
should be. The time complexity is only O(1). Then, Csore(3)
will be used to lookup the successor Csore(5) on skiplist
with O(logB), where B is the size of the skiplist block.
In fact, with the help of the maximum value Csore(2) in
the first block and the minimum value Csore(5) in the
second block, the cloud can find the successor for Csore(3)
quickly. Finally, the cloud server responds to the range
query 3 < x < 18 by returning all items between Csore(5)
and Csore(17) (including them).

After obtaining the desired ciphertexts, the data users
can use the sk, loc[Nb], and rs[Nb], which are authorized by
the data provider, to recover the corresponding plaintexts.

4.2.2 Insert

Similar to the range query launched by the data user, when
inserting, the data provider also needs to calculate three
values Hp(di), Hoa(di) and Csore(di) for the inserting data
di, and forward them to the cloud server. Then, on the cloud
side, Hoa(di) will be used to insert Csore(di) in SORELrq ,
and Hp(di) is for insertion in SORELeq .

For inserting a ciphertext, the cloud server needs to
lookup the predecessor of the insertion value first, which
is analogous to the query operation. Then, some updating
operations have to be conducted, such as updating the
doubly linked list and the tuple of 〈max,min〉. However,
if the new items are continuously inserted, there may be
excessive items in one block. To tackle this case, we set a
threshold for the block size, denoted as Bth, and define an
index refactoring mechanism.

Index refactoring. Suppose there are Bc blocks in our
index structure, the dataset has the domain An. Therefore,
Bth = dAn

Bc
e. Since An > Count(D), Bth will be greater than

Bn. The data provider will hold a table to record the real-
time size for each block. In the table, there are Bc items,
and the key is LH(x) that can uniquely identify a block.
Before forwarding a new item to the cloud server, the data
provider will check if the block size to which the inserting
value belongs is larger than Bth. If so, the data provider
will launch the index building as discussed in Section 4.1.3.
Since the data provider only needs to check if the size of
the block to be inserted is greater than Bth or not, the time
complexity of this operation is O(1). Actually, in our target
scenario, which is read frequently and has fewer insertions,
the index refactoring does not happen often.

Notably, in our scheme, the duplicate items are ignored,
since they can be organized under the same node of the
skiplist. When performing a query, all of the values in one
node will be returned if hit.

4.2.3 Delete

For deleting, the data provider only needs to compute and
send one hash value Hp(de) to the cloud server, where
de is the data to be deleted. If the value exists, the cloud
can find it quickly both in SORELeq and SORELrq due to
the link between them. The remaining tasks are to update
the SORELrq , which are similar to insertion. For the data

provider, the other operation is to update the block size to
which the deletion item belongs.

5 ANALYSIS

In this section, we conduct a formal analysis of SOREL in
terms of security and efficiency.

5.1 Security analysis
As the confidentiality of the outsourced data in SOREL is
mainly guaranteed by SORE, in this section, we will first
explore the leakage profile of SORE, and then analyze the
security of the proposed index structure.

Security of SORE. For efficiency and practicality, we
choose the bit-based ORE as the basic cryptographic prim-
itive. However, these encryption schemes leak more infor-
mation, namely, the most significant differing bit, except for
order relations. Therefore, the security of these encryption
schemes is much weaker than the ideal security (IND-
OCPA) of ORE, which requires that the encrypted data
reveal nothing except for order relations. To enhance the
security, we propose SORE to hide the most significant
differing bit, and our aim is to bring the existing bit-based
ORE schemes closer to IND-OCPA. The key idea is that
the cloud server still knows the first differing bit through
a comparison function, but it is not the real first differing bit
in the original plaintext sequence. Suppose m ∈ {0, 1}n is a
plaintext with n bits. By applying SORE.REE(), it turns into
mopbs ∈ {0, 1}k(`+n+`), where k is an expansion coefficient
and ` is the length of fixed prefix and suffix. The cloud
server can learn the first bit that is different in two encoded
sequences mopbs ∈ {0, 1}k(`+n+`) using the comparison
function SORE.Compare(). However, the first differing bit
in the original plaintext m ∈ {0, 1}n is still unknown. To
learn the real first differing bit in plaintext m ∈ {0, 1}n, the
cloud server needs to identify which bit of m ∈ {0, 1}n is
mapped to the leaked bit in mopbs ∈ {0, 1}k(`+n+`). Next,
we will prove that it is hard for the cloud to infer the real
first differing bit from the SORE ciphertexts.

To facilitate security analysis, we introduce a leakage
function to depict the security level. For IND-OCPA, we
have the following leakage function:

L(ci, cj) = {Pr(mi < mj) = 1 | ci < cj}

It means the order relation for the plaintexts mi and mj can
be leaked through comparing the corresponding ciphertexts.
Whilst, for the bit-based ORE, the leakage function can be
defined as follows [13]:

Lore(ci, cj) = {Pr(diff(mi,mj)) = 1,

P r(mi ≤ mj) = 1 | ci ≤ cj}

where diff(mi,mj) gives the index of the first bit that differs
between two plaintexts: mi and mj . Here, we define the
lower order as little endian and encode the index from 1.
For instance, comparing 0101 and 0111, the index of the first
differing bit is 2.

Now, we explore the leakage function for SORE. First,
we denote p as the index of the most significant differing bit
for SORE ciphertexts and say x is the index of the most
significant differing bit for the corresponding plaintexts.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 9

Then, using SORE.Compare() function, the cloud can get p
for any given two ciphertexts. Afterward, it is easy for the
cloud to guess the upper bound of x, i.e., x < p−`, in which
` is public. Further, the lower bound of x can be revealed by
the number of distinct ciphertexts whose values lie inside
the range of these two compared ciphertexts, and we denote
it as nc. As these ciphertexts will occupy at least log2 nc bits,
the cloud server can guess x > log2 nc. Consequently, the
real index should be guessed in a range: log2 nc < x < p−`.

To prove the correctness of above inequality, we assume
that there are two integers {mi,mj} and mi > mj . It is
clear that there are mi − mj − 1 distinct integers between
them. From the definition of nc, we have mi−mj − 1 ≥ nc.
If let p′ indicate the index of the first differing bit between
mi and mj , we have 2p

′
> mi − mj − 1 ≥ nc. Recalling

Section 3.2, our SORE scheme adds the suffix bit sequence
{0, 1}` to the message bit sequence and expands it into a
new bit sequence with k(` + n + `) length. Therefore, we
have p − ` > p′. Hence, p − ` > log2 nc. Accordingly, the
leakage profile for SORE is as follow:

Lsore(ci, cj) = {Pr(diff(mi,mj)) =
1

(p− `)− log2 nc
,

P r(mi ≤ mj) = 1 | ci ≤ cj}
However, since we guarantee that at least one bit is selected
in suffix, and the bit length of the substitution sequence
is larger than 2, we have (p − `) − log2 nc ≥ 2. Besides,
there is no advantage for the cloud to determine whether
the guessed index is correct. Therefore, the cloud server
cannot determine the most significant differing bit of the
underlying plaintexts from SORE ciphertexts, and our SORE
scheme indeed improves the security of bit-based ORE by
hiding the most significant differing bit.

For OPE and ORE based encryption schemes, they pre-
serve the order relations in their ciphertexts to maximize
efficiency when performing range queries. Since the or-
der relations may incur inference attacks [24], we suggest
applying SORE in a large domain with low density due
to security considerations. Besides, to ensure security, our
SORE scheme should be applied to one column, i.e., each
column of a database should have its own secret key, and
SORE encrypts the database by column.

Security of Index structure. In our threat model, we
consider the cloud server is curious about the outsourced
data and operation values. At first, our SORE scheme
guarantees the cloud server cannot obtain the underlying
plaintexts from the encrypted outsourced data without sk,
loc[Nb], and rs[Nb] (note that we apply SORE in a large
domain with low density). Second, when performing range
queries and insertions on the index structure, the cloud
server can receive the corresponding operation values, i.e.,
Hp(x),Hoa(x), andCsore(x). However, none of these values
leaks the original plaintext. Regarding point queries and
deletions, onlyHp(x) is sent to the cloud server. Therefore, it
is secure on the operation values when performing queries,
insertions, and deletions. Another security concern on the
index structure is that it may potentially disclose the data
distribution of the original dataset. We design a distribution
suppression scheme to hide this information. Since each
block in level 2 has the approximately same number of data
items, the cloud server learns nothing about the original

data distribution. Hence, the proposed index structure is
secure for outsourced data and operation values.

Note that, in our scheme, the data user should offer
identity-related information to demonstrate his/her legiti-
macy, which can be achieved by the authentication schemes
in [25], [26].

5.2 Efficiency analysis
A significant goal of our system is to make the proposed
schemes as efficient as possible while enhancing the security
of the outsourced data. In this section, we analyze the
efficiency of SORE and operations over our index structure.

SORE. The efficiency of SORE depends on the security
enhancement algorithm SORE.REE() and the encryption al-
gorithm SORE.Encrypt(). First, SORE.REE() algorithm only
has a time complexity O(`+n+`), where n and ` are the bit
lengths of plaintext sequence and prefix/suffix, respectively,
and often neither n nor ` is large. Second, SORE.Encrypt()
algorithm has a time complexity O(k(`+n+`)), while the
underlying bit-based ORE has a baseline with O(n).

Index structure. We now analyze the efficiency of query
and insert operations over the designed index structure.

• Query. Since the time complexity of the point query in
our scheme is straightforward, i.e., O(1), here we will only
discuss the efficiency of the range query. Without loss of
generality, when performing a range query, our scheme has
a time complexity of O(1) + O(logB), where B is the size
of the skiplist block, as shown in Fig. 4. For a fixed dataset,
the smaller the B is, the closer the efficiency of our scheme
is to that of hash table with O(1). Conversely, as the value
of B gets larger, the efficiency deteriorates as the complexity
approaches towards that of the binary tree with O(logN).
Since we can make B � N , (concrete examples are in
Section 6.3), our scheme is always much better than the
binary tree. Furthermore, we enhance range query efficiency
by adopting optimization techniques: (i) we store maximum
and minimum values at each block. It can accelerate the
range query performance over original skiplist, since the
values outside the minimum and maximum boundaries can
perform the range query with O(1) rather than O(logB);
(ii) we link SORELeq to SORELrq and search on SORELeq
first, which can improve the efficiency at the structural level
compared with tree-based indexes.

• Insertion. On the cloud side, for SORELeq , the insertion
has the same time complexity as hash tables. For SORELrq ,
the insertion complexity is O(1) + O(logB), which is sim-
ilar to the range query. Meanwhile, stored maximum and
minimum values can speed up the operation. Therefore, our
scheme is competitive for the insertion on the cloud side.
On the data provider side, if the current block size is not
greater than the threshold Bth, the time complexity is O(1).
Otherwise, we need to rebuild the index structure. However,
for a stable dataset with a given domain, the rebuilding is
infrequent in the target scenario.

6 EVALUATION

In this section, we evaluate the proposed SORE and data
operations (range query and insert) on our index structure.
Both of them are evaluated in terms of experimentally ana-
lyzing the impact factors and comparing with prior works.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 10

6.1 Experimental setup
Implementation. Our implementation is entirely written
in C and is evaluated on Ubuntu 16.04 OS with 16 GB
memory and 3.4 GHz Intel(R) Core(TM) i7-3770 processors.
To implement SORE, we choose the most practical ORE
construction scheme [13], henceforth referred to PORE, as
the security enhancement object, which uses SHA-256 as
the pseudo-random function and AES-128 as the encryption
algorithm. For the index structure, we adopt an extendible
hashing technique [27] in level 1 of SORELrq and limit the
bucket to 1, which allows us to automatically expand the
size of the hash table when conflicts occur. In SORELeq , the
cuckoo hashing technique [28] is used to attain O(1) search
time complexity. As the main memory capacity is growing,
in-memory databases [29] are becoming popular. Hence, we
evaluate all the schemes with in-memory versions. Note
that all of the schemes are evaluated on integer datasets. It
is reasonable since we can easily convert non-integer data,
such as floats, into integers.

Datasets. As mentioned in Section 5.2, the time com-
plexity of SORE is related to the maximum bit length of
plaintexts. To evaluate it, we synthesized a dataset with six
attributes, and each of them contains 4 million integers that
are randomly generated in different domains from 28 to 224.

To evaluate the performance of the range query and
insertion, we experiment with five datasets, including two
real-world datasets and three synthetic datasets. The first
real-world dataset is from the “total pay and benefits” col-
umn of California public employees salaries [30], hereafter
called Salary dataset. We convert the dataset into positive in-
tegers with domain An={0,770000}. The second real-world
dataset is from the “location id” column of the Gowalla geo-
social network [31], called LocId dataset, which has a domain
An={0,6000000} with 1,280,969 distinct items. For the syn-
thetic datasets, we adopt the benchmark Sanzu [32] to gen-
erate one normal-distribution and two uniform-distribution
datasets. We list the detailed information of these datasets
in Table 2, where Nor24, Uni24, and Uni48 are shorthand for
these three synthetic datasets, respectively, and the column
Density = Dataset size

Domain size .

TABLE 2: Datasets for testing rang query and insertion
Name Datasize Domain Density
Salary 86412 [0,770000] 11%
LocId 1280969 [0,6000000] 21%
Nor24 2410000 [0,6000000] 40.2%
Uni24 2420000 [0,6000000] 40.3%
Uni48 4760000 [0,6000000] 79.5%

6.2 Performance of SORE
In our experiments, we use execution time as the cost metric
of the encryption process of SORE. We first measure the
average execution time for each component in SORE and
then compare it with other related cryptographic primitives.

6.2.1 Performance of the components in SORE
Recall from Section 5.2, for encryption, the execution time of
SORE is mainly due to the algorithms of SORE.REE() and
SORE.Encrypt(). Since we adopt PORE as the underlying en-
cryption scheme, here the SORE.Encrypt()=PORE.Encrypt().
The evaluation results for various bit lengths of plaintext

are shown in Fig. 6. It is evident that SORE is sensitive
to the bit length of plaintexts. And the longer the length,
the more time it will take. In these experiments, we set
the expansion coefficient k as 1.5 and 2, respectively, and
the length of prefix and suffix ` as 2. The cost of PORE is
a linear function for bit length n and is the major time-
consuming component for SORE. Note that PORE encrypts
the plaintext directly, while SORE.Encrypt() encrypts the
expanded plaintext. From Fig. 6, we can see that most of the
execution time of SORE is contributed by the underlying
ORE scheme, while the core algorithm SORE.REE() only
accounts for a small proportion. This trend is more obvious
as the bit length of plaintext gets longer, which demonstrates
that we improved the security of ORE at a little cost.

6.2.2 Comparison with other encryption primitives
To date, there are two major cryptographic primitives, OPE
and ORE, which reveal the order property of plaintext. To
be fair, we select the most efficient scheme (with a similar
security level) in each primitive as competitors. For OPE,
we choose a practical OPE scheme, denoted as POPE, to
compare against. This scheme has been integrated into
CryptDB [10] for supporting the range query over encrypted
data. For ORE, we choose an efficient bit-based ORE scheme
[14], denoted as NORE, which can also protect the first bit
from being leaked. Fig. 7 illustrates the average execution
time of these schemes at different plaintext lengths. We
evaluate SORE with k=1.5 and k=2.0, and the results show
that even at k=2.0, SORE is at least 8× faster than NORE and
at least 25× faster than POPE when the plaintext length is
greater than 8 bits. It is worth noting that we do not expand
the ciphertext of POPE to a larger domain in the experiment.
Otherwise this encryption will take more time.

6.3 Performance of index structure
In this section, we evaluate the performance of our proposed
index structure. Since we adopt the hash table technique to
resolve the point query, it is unfair to measure it. Hence,
for the query processing, we only evaluate and compare
the range query operation. Similar to Section 6.2, we first
experimentally analyze how the relevant factors affect the
efficiency of building, insertion and range query, then we
compare our scheme with other efficient schemes that can
support these operations over encrypted data.

6.3.1 Performance of building, insertion and range query
For a given dataset, generally, the index structure is built
intensively, while it is scattered in time for insertion and
range query. Consequently, we will evaluate the total execu-
tion time of index building and the average execution time
of insertion and range query.

Index Building. For most index structures, intuitively,
the dataset size can affect the performance of index building.
For our scheme, in addition to this factor, the other factor
is the block size, Bn, which is determined by the data
provider. Fig. 8 shows the execution time to build our index
structure on these five datasets. In each dataset, we vary
Bn from 16 to 256, and the results show that the larger
Bn is, the more time it will take. It is reasonable since we
build the index structure by inserting items (see details in

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 11

0.41 0.48 0.53 0.53 0.54 0.56
1.48

2.26 2.45 2.64 2.85 3.092.86

4.16
4.56 4.87 5.15 5.5

3.53

5.29 5.64
6.19

6.81 7.06

0

2

4

6

8

8 16 18 20 22 24

T
im

e
 (
μ

s
/

o
p

e
ra

ti
o

n
)

Plaintext length (bit)

SORE.REE PORE SORE,k=1.5 SORE,k=2

Fig. 6: Evaluating SORE components

3.53
5.25 5.59 6.11 6.58 7.0720.78

41.07 46.33 51.51 55.96 61.22
46.15

139.74 148 157.09

181.46 187.19

0
20
40
60
80

100
120
140
160
180
200

8 16 18 20 22 24

T
im

e
 (
μ

s/
o

p
e

ra
ti

o
n

)

Plaintext length (bit)

SORE-k=1.5 SORE-k=2 NORE POPE

Fig. 7: Encryption primitives

0

20

40

60

80

100

120

Salary LocId Nor24 Uni24 Uni48

T
im

e
 (

s)

Datasets

Bn=256 Bn=64 Bn=16

Fig. 8: Total time of index building

Algorithm 3). Another interesting point is that the index
building overhead for Nor24 and Uni24 is close. In fact, for
the datasets with different data distributions, we apply the
distribution suppression scheme to compress the datasets
into equal-size blocks. Therefore, the index building time is
not impacted by the dataset distribution.

Insertion. As mentioned in Section 5.2 , the time com-
plexity of insertion isO(1)+O(logB), whereB is the size of
the block. In our experiments: B = Bn. Besides, we remove
the repeated data. Hence, the average insertion time is only
related to the block size. Fig. 9 shows the evaluation results
on different datasets, which verifies our analysis.

Range query. Similar to insertion, the range query on
our index structure has a basic time complexity O(1) +
O(logB). It means that Bn will also affect the performance
of the range query. Additionally, the density of the dataset
will have a significant impact on the average execution time
of the range query. Specifically, the denser the dataset, the
lower the average execution time. That is because, on a
fixed domain, we can locate the predecessor or successor
by SORELeq rather than SORELrq with a higher probability
when the data volume is large, which can dramatically
reduce the range query complexity from O(1) + O(logB)
to O(1). Fig. 10 shows the average query time with these
five datasets. Obviously, the average query time with Uni48
is the lowest, which benefits from its high density of around
80%. For Nor24 dataset, it keeps the same level, even lower,
performance compared to that of Uni24 dataset, which
suggests that our distribution suppression scheme can pre-
vent range query performance from deteriorating on non-
uniform distribution. Also, although the datasets Nor24 and
Uni24 have a close density value, the average query time of
Uni24 is higher than that of Nor24 slightly. In fact, the larger
density can only guarantee that there is a higher probability,
not absolute, to hit. Therefore, the performance of the range
query is also related to the specific dataset and query values.

6.3.2 Comparison with other index structures
Since OPE is not efficient, the combination of OPE and
traditional indexes is not competitive in terms of perfor-
mance. Roche et al. [9] proposed an approach to support
range query and insert operations using OPE, which is
fairly fast with insertion operation. However, it sacrifices
the performance of query operations and has a large number
of interactive communications. ORE is more practical than
OPE. It can be expected that building index structures on
ORE can have better performance than on OPE. Therefore,
the ORE-based protocol from [22] is adopted as a com-

TABLE 3: SSE-based range query schemes
n: dataset size, r: result size, m: domain size, R: query range size

Schemes Interaction Search time Storage
PBtree [4] No Ω(logn logR + r) O(n logn logm)
Quadratic No O(r) O(nm2)
Constant-BRC No O(R + r) O(n)
Logarithmic-BRC No O(logR + r) O(n logm)
Logarithmic-SRC No O(n) O(n logm)
Logarithmic-SRC-i Yes O(R + r) O(n logm)

0

5

10

15

20

25

Salary LocId Nor24 Uni24 Uni48

T
im

e
 (
μ

s/
p

e
r

o
p

e
ra

ti
o

n
)

Datasets

Bn=256 Bn=64 Bn=16

Fig. 9: Average time
of insertion

0

5

10

15

20

25

30

Salary LocId Nor24 Uni24 Uni48

T
im

e
 (
μ

s/
p

e
r

o
p

e
ra

ti
o

n
)

Datasets

Bn=256 Bn=64 Bn=16

Fig. 10: Average time
of range query

petitor, which is built with a B+tree working on top of
a practical ORE scheme. To be fair, in implementing the
comparison scheme, we use the most practical ORE [13] for
the competitor, and the STX B+tree [33], a highly optimized
and mature implementation, is adopted.

A different approach is to perform the range query
and insertion using SSE [3]. Such schemes allow direct use
of hash tables for the range query and achieve efficient
performance on both operations. In Table 3, we compare the
properties of these schemes and select one of the efficient
SSE-based scheme logarithmic-BRC, abbreviated as LogBRC,
as the comparison scheme. In Table 3, we can see that
the fastest scheme is Quadratic that has the search time
complexity with O(r) (note that n � R and r in the big
data scenario). However, this scheme consumes a lot of
storage overhead, which makes it impractical. Therefore, we
choose LogBRC as the comparison scheme for the overall
performance considerations.

Note that, both the B+tree based scheme and our scheme
only locate the predecessor and successor when performing
a range query. Thus, for LogBRC, we just locate the query
results without collecting them in our implementation.

Since our index structure is built by inserting data items,
the average insertion time can also reflect the performance
of the index structure building. Hence, we will compare our
scheme with other schemes only in the average execution
time of insertion and range query. Besides, since the Uni48
dataset has the largest data size (4.76 million) among these

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 12

0

20

40

60

80

100

0.95 1.9 2.85 3.8 4.75

T
im

e
 (
μ

s/
p

e
r

o
p

e
ra

ti
o

n
)

Dataset size (million)

SOREL-64 SOREL-16 BtreeORE-64

BtreeORE-16 LogBRC

Fig. 11: Insert comparison

0

10

20

30

40

50

60

70

80

0.95 1.9 2.85 3.8 4.75

T
im

e
 (
μ

s/
p

e
r

o
p

e
ra

ti
o

n
)

Dataset size (million)

SOREL-64 SOREL-16 BtreeORE-64

BtreeORE-16 LogBRC

Fig. 12: Range query
comparison

five datasets, it is selected to evaluate each scheme varying
with dataset size, and the data volume ranged from 0.95
million to 4.75 million that are randomly sampled.

Comparison on insertion. Fig. 11 compares our scheme
with other schemes in the average execution time of inser-
tion. We provide two versions for the B+tree-based scheme.
One has 64 slots denoted as BtreeORE-64, the other has
16 slots represented as BtreeORE-16. Correspondingly, our
scheme also offers the same settings, choosing Bn=64 and
Bn=16 as comparison schemes. In Fig. 11, both our schemes
have better performance than BtreeORE based schemes.
Despite that the insertion performance of SOREL-64 is not as
good as LogBRC, it is competitive when Bn=16. It is because
the insertion time of our index is affected by the block size,
and the smaller block size will make our index more efficient
in insertions.

Comparison on range query. Fig. 12 shows the average
execution time of the range query for each scheme. As the
data volume grows, the average query time of our schemes
decreases, while it increases for others. This shows the
superiority of our scheme in the given domain scenarios.
When the data volume is large, our schemes outperform the
corresponding BtreeORE based schemes by 9× and 7×, re-
spectively. From Fig. 12, we can see that SOREL-16 performs
better than LogBRC when the dataset size is greater than
around 2.5 million, while it is about 3.5 million for SOREL-
64. In our scheme, when the data volume grows large, the
search key would hit the existing values with a higher
probability, which approaches the range query complexity
to O(1). For LogBRC, more items will be retrieved from
the inverted table when the data volume is larger. Thus,
our index has better query performance with large data
volumes. When the dataset size is 4.75 million, our scheme
improves the average execution time of LogBRC by up to
around 3×. Actually, by making full use of the hash table
techniques, the LogBRC scheme is already efficient enough
in performing the insertion and range query. However,
such schemes are limited to enumerable attributes. By con-
trast, our scheme can support continuous attributes while
guaranteeing better performance in range query operations.
Therefore, our scheme has better scalability in data volume
and data type.

7 RELATED WORK

Encryption primitives. To utilize outsourced data in a se-
cure way, researchers have presented several cryptographic
primitives to support the secure query and insertion. One
of the most prominent schemes is property preserving en-
cryption (PPE) [5], which allows the ciphertexts to reveal

a particular property of their underlying plaintexts. For
instance, deterministic encryption (DET) leaks the equality
property, while order preserving encryption (OPE) [6] is
proposed to keep the order property of plaintexts. In [11], an
efficient OPE scheme was proposed, and the authors proved
that the ideal security level of OPE is IND-OCPA. To im-
prove security, some optimized OPE schemes [34], [35] were
proposed based on the OPE definition, that is, if p1 < p2,
then Enc(p1) < Enc(p2). In [34], before applying OPE, a
modular shift is applied in plaintext to enhance its security.
In [35], Kerschbaum proposed a scheme in which the basic
idea is to randomize the ciphertexts to hide the frequency of
the queries. However, OPE schemes are only able to support
numeric value, and Boldyreva et al. [11] showed that IND-
OCPA is unachievable for all practical OPE schemes. An
alternative order persevering scheme called ORE (Order-
Revealing Encryption) [12] was proposed by Dan Boneh et
al. This approach can support any data type. Although the
encryption scheme appears to resemble semantic security,
a special public comparison function is designed to reveal
order by comparing two ciphertexts. Unfortunately, in [13],
[14], the constructed ORE schemes have extra leakage for
the most significant differing bit or block. In addition, [15],
[16] were proposed with the leakage of “equality pattern”
of the most significant differing bits.

In addition to PPE, several cryptographic primitives
have been proposed for secure outsourced data, which have
a higher security level and do not expose any plaintext
properties. Among them, a popular scheme is Homomor-
phic Encryption (HE) [1], which allows basic operations on
encrypted data. Although HE can guarantee both security
and utility, its significant performance overhead makes it
hard to be a practical scheme. Another popular crypto-
graphic primitive is the garbled circuit [36]. It can be used to
compare data without leaking their information. However,
the garbled circuit suffers from similar performance issues
and is inefficient with updates. A very different primitive
is Oblivious RAM (ORAM), which was proposed by [37].
Similarly, this approach also has performance problems.

Query over encrypted data. The issue of supporting
query processing over encrypted data has attracted a lot
of attention due to the important applications involving
outsourced data in the cloud. Most of the ciphertext-based
range query protocols were built on existing cryptographic
primitives that we introduced earlier. Following the idea
of OPE, MOPE [8] and POPE [9] were designed to sup-
port range query while improving security. Both protocols
are claimed to be able to achieve IND-OCPA. However,
excessive communications among the entities make them
less practical. Based on the garbled circuit, the authors
in [2] presented an index, ArxRange, for range and order-
by-limit queries, which can avoid interactions and achieve
higher security compared with OPE-based protocols. As
mentioned earlier, updating circuits may seriously affect the
efficiency of ArxRange. A number of ORAM-based range
query schemes [38], [39] have been proposed. However,
due to the limitations of the underlying primitive, they are
less competitive in terms of efficiency. Following the notion
of Searchable Symmetric Encryption (SSE), Demertzis et
al. [3] proposed several schemes with realistic security and
efficiency trade-offs. The main idea behind these schemes

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 13

is to convert a range query into the multi-keyword search
and then apply SSE schemes. However, these range query
protocols only support enumerable fields. In [21], a scheme
to support range query over encrypted data for multiple
dimensions was proposed. In the approach, multi-attributes
in a dataset are divided into small cubes, and queries
are executed on them. However, this scheme incurs false
positives, and updates are performed inefficiently.

8 CONCLUSIONS

In this paper, we first propose a secure ORE-based en-
cryption scheme, SORE, which can enhance the security of
existing bit-based ORE schemes. Then, a novel index struc-
ture is presented to support query and insertion operations
efficiently. Moreover, a distribution suppression scheme is
introduced to guarantee the security and efficiency of the
proposed index structure. By combining these schemes,
we present a practical framework, SOREL, which can be
applied to secure outsourced data. Detailed experimental
evaluations are conducted, and the results show that our
schemes outperform existing approaches. As future work,
we expect to enhance the security of SORE when applying it
to the small domain or high-density datasets and further im-
prove the efficiency of our ORE-based range query scheme.

REFERENCES

[1] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic encryp-
tion and secure comparison,” IJACT, vol. 1, no. 1, pp. 22–31, 2008.

[2] R. Poddar, T. Boelter, and R. A. Popa, “Arx: an encrypted database
using semantically secure encryption,” VLDB, pp. 1664–1678, 2019.

[3] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
and M. Garofalakis, “Practical private range search revisited,” in
SIGMOD, 2016, pp. 185–198.

[4] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range
query processing with strong privacy protection for cloud com-
puting,” VLDB, pp. 1953–1964, 2014.

[5] O. Pandey and Y. Rouselakis, “Property preserving symmetric
encryption,” in EUROCRYPT. Springer, 2012, pp. 375–391.

[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in SIGMOD, 2004, pp. 563–574.

[7] P. Antonopoulos, A. Arasu, K. D. Singh, K. Eguro, N. Gupta,
R. Jain, R. Kaushik, H. Kodavalla, D. Kossmann, N. Ogg et al.,
“Azure sql database always encrypted,” in SIGMOD, 2020, pp.
1511–1525.

[8] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol
for order-preserving encoding,” in S&P, 2013, pp. 463–477.

[9] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “Pope:
Partial order preserving encoding,” in SIGSAC, 2016, pp. 1131–
1142.

[10] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query pro-
cessing,” in SOSP, 2011, pp. 85–100.

[11] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-
preserving symmetric encryption,” in EUROCRYPT, 2009, pp.
224–241.

[12] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman, “Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation,” in EU-
ROCRYPT, 2015, pp. 563–594.

[13] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical order-
revealing encryption with limited leakage,” in FSE, 2016, pp. 474–
493.

[14] K. Lewi and D. J. Wu, “Order-revealing encryption: New construc-
tions, applications, and lower bounds,” in SIGSAC, 2016, pp. 1167–
1178.

[15] D. Cash, F.-H. Liu, A. O’Neill, and C. Zhang, “Reducing the
leakage in practical order-revealing encryption.” IACR Cryptology
ePrint Archive, vol. 2016, p. 661, 2016.

[16] D. Cash, F.-H. Liu, A. O’Neill, M. Zhandry, and C. Zhang,
“Parameter-hiding order revealing encryption,” in ASIACRYPT,
2018, pp. 181–210.

[17] D. Comer, “Ubiquitous B-tree,” CSUR, pp. 121–137, 1979.
[18] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast

multicore key-value storage,” in EuroSys, 2012, pp. 183–196.
[19] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree:

Artful indexing for main-memory databases,” in ICDE, 2013, pp.
38–49.

[20] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, “Locality-
preserving hashing in multidimensional spaces,” in STOC, 1997,
pp. 618–625.

[21] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “ServeDB:
secure, verifiable, and efficient range queries on outsourced
database,” in ICDE, 2019, pp. 626–637.

[22] D. Bogatov, G. Kollios, and L. Reyzin, “A comparative evaluation
of order-revealing encryption schemes and secure range-query
protocols,” VLDB, vol. 12, no. 8, pp. 933–947, 2019.

[23] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“Fiting-tree: A data-aware index structure,” in SIGMOD, 2019, pp.
1189–1206.

[24] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in SIGSAC, 2015, pp.
644–655.

[25] S. Qiu, D. Wang, G. Xu, and S. Kumari, “Practical and provably
secure three-factor authentication protocol based on extended
chaotic-maps for mobile lightweight devices,” IEEE Transactions
on Dependable and Secure Computing, 2020.

[26] D. Wang and P. Wang, “Two birds with one stone: Two-factor
authentication with security beyond conventional bound,” IEEE
transactions on dependable and secure computing, pp. 708–722, 2016.

[27] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible
hashing—a fast access method for dynamic files,” TODS, vol. 4,
no. 3, pp. 315–344, 1979.

[28] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in ESA, 2001, pp.
121–133.

[29] J. Lee, Y. S. Kwon, F. Färber, M. Muehle, C. Lee, C. Bensberg,
J. Y. Lee, A. H. Lee, and W. Lehner, “SAP HANA distributed
in-memory database system: Transaction, session, and metadata
management,” in ICDE. IEEE, 2013, pp. 1165–1173.

[30] “2019 salaries for state of california,”
https://transparentcalifornia.com/salaries/2019/state-of-california/.

[31] J. Leskovec, “Gowalla geo-social network dataset,”
http://snap.stanford.edu/data/loc-gowalla.html, 2011.

[32] A. Watson, D. S. V. Babu, and S. Ray, “Sanzu: A data science
benchmark,” in Big Data. IEEE, 2017, pp. 263–272.

[33] T. Bingmann, “STX B+ Tree C++ Template Classes,”
https://panthema.net/2007/stx-btree/, 2013.

[34] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: Improved security analysis and alternative
solutions,” in CRYPTO, 2011, pp. 578–595.

[35] F. Kerschbaum, “Frequency-hiding order-preserving encryption,”
in SIGSAC, 2015, pp. 656–667.

[36] A. C. Yao, “Protocols for secure computations,” in SFCS, 1982, pp.
160–164.

[37] O. Goldreich, “Towards a theory of software protection and simu-
lation by oblivious rams,” in STOC, 1987, pp. 182–194.

[38] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious
cloud storage,” in S&P. IEEE, 2013, pp. 253–267.

[39] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in SIGSAC, 2013, pp. 299–310.

Songnian Zhang received his M.S. degree from
Xidian University, China, in 2016 and he is cur-
rently pursuing his Ph.D. degree in the Fac-
ulty of Computer Science, University of New
Brunswick, Canada. His research interest in-
cludes cloud computing security, big data query
and query privacy.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3089986, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 14

Suprio Ray is an Associate Professor with the
Faculty of Computer Science, University of New
Brunswick, Fredericton, Canada. He received
a Ph.D. degree from the Department of Com-
puter Science, University of Toronto, Canada.
His research interests include big data and
database management systems, run-time sys-
tems for scalable data science, provenance and
privacy issues in big data and data management
for the Internet of Things. E-mail: sray@unb.ca

Rongxing Lu (S’09-M’11-SM’15-F’21) is an as-
sociate professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an assis-
tant professor at the School of Electrical and
Electronic Engineering, Nanyang Technological
University (NTU), Singapore from April 2013 to
August 2016. Rongxing Lu worked as a Post-
doctoral Fellow at the University of Waterloo
from May 2012 to April 2013. He was awarded
the most prestigious “Governor General’s Gold

Medal”, when he received his PhD degree from the Department of Elec-
trical & Computer Engineering, University of Waterloo, Canada, in 2012;
and won the 8th IEEE Communications Society (ComSoc) Asia Pacific
(AP) Outstanding Young Researcher Award, in 2013. Dr. Lu is an IEEE
Fellow. His research interests include applied cryptography, privacy en-
hancing technologies, and IoT-Big Data security and privacy. Currently,
Dr. Lu serves as the Vice-Chair (Conferences) of IEEE ComSoc CIS-TC
(Communications and Information Security Technical Committee).

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:27:03 UTC from IEEE Xplore. Restrictions apply.

